15 research outputs found

    A Review on Framework and Quality of Service Based Web Services Discovery

    Get PDF
    Selection of Web services (WSs) is one of the most important steps in the application of different types of WSs such as WS composition systems and the Universal Description, Discovery, and Integration (UDDI) registries. The more available these WSs on the Internet are, the wider the number of these services whose functions match the various service requests is. Selecting WSs with higher quality largely depends on the quality of service (QoS) since it plays a significant role in selecting such services. In achieving this selection of the best WSs, the potential WSs are ranked according to the user’s necessities on service quality. In many cases, the value of QoS ontology is realized by its support for nonfunctional features of WSs. This ontology is also capable of providing solutions to the interoperability of QoS description. Moreover, based on the QoS ontology, it becomes more possible to develop a framework of semantic WS discovery. The framework enhances the automatic discovery of WSs and can improve the users’ efficiency in finding the best web services. Thus, Web Services are software functionalities publish and accessible through the Internet. Different protocols and web mechanism have been defined to access these Services

    Enhancement Of Medical Image Compression Algorithm In Noisy WLANS Transmission

    Get PDF
    Advances in telemedicine technology enable rapid medical diagnoses with visualization and quantitative assessment by medical practitioners.In healthcare and hospital networks,medical data exchange-based wireless local area network (WLAN) transceivers remain challenging because of their growing data size,real-time contact with compressed images,and range of bandwidths requiring transmission support.Prior to transmission,medical data are compressed to minimize transmission bandwidth and save transmitting power.Researchers address many challenges in improving performance of compression approaches.Such challenges include energy compaction, computational complexity,high entropy value,drive low compression ratio (CR) and high computational complexity in real-time implementation.Thus,a new approach called Enhanced Independent Component Analysis (EICA) for medical image compression has been developed to boost compression techniques;which transform the image data by block-based Independent Component Analysis (ICA).The proposed method uses Fast Independent Component Analysis (FastICA) algorithm followed by developed quantization architecture based zero quantized coefficients percentage (ZQCP) prediction model using artificial neural network. For image reconstruction,decoding steps based the developed quantization architecture are examined.The EICA is particularly useful where the size of the transmitted data needs to be reduced to minimize the image transmission time.For data compression with suitable and effective performance,enhanced independent components analysis (EICA) is proposed as an algorithm for compression and decompression of medical data.A comparative analysis is performed based on existing data compression techniques:discrete cosine transform (DCT), set partitioning in hierarchical trees (SPIHT),and Joint Photographic Experts Group (JPEG 2000).Three main modules,namely,compression segment (CS),transceiver segment (TRS),and outcome segment (OTS) modules,are developed to realize a fully computerized simulation tool for medical data compression with suitable and effective performance.To compress medical data using algorithms,CS module involves four different approaches which are DCT, SPIHT,JPEG 2000 and EICA.TRS module is processed by low-cost WLANs with low-bandwidth transmission.Finally,OTS is used for data decompression and visualization result.In terms of compression module,results show the benefits of applying EICA in medical data compression and transmission.While for system design,the developed system displays favorable outcomes in compressing and transmitting medical data.In conclusion,all three modules (CS,TRS,and OTS) are integrated to yield a computerized prototype named as Medical Data Simulation System(Medata-SIM) computerized system that includes medical data compression and transceiver for visualization to aid medical practitioners in carrying out rapid diagnoses

    Change Management in the Implementation of LearningCare in Universiti Utara Malaysia

    Get PDF
    Most educational institutions' administrators are concerned about e-learning and distance learning. University Utara Malaysia (UUM) Group Web communication application is a module of e-learning. Toward this end, University Teaching and Learning Centre (UTLC) has been made responsible in implementing e-learning in the university. The E-university committee has agreed to purchase Learningcare Learning Management System (LMS) for academic purposes. This system became operational in May 2002/2003 Semester. The value of e-learning has become widely recognized and accepted. This study aims to find out whether change management principles were used in the implementation of Learningcare. The study focuses on the adoption of Learningcare in University Utara Malaysia and the role of various players in UUM responsible for the development and implementation of Learningcare. John Kotter, eight stages of change management principles were chosen as the study change management platform. Correlation analysis was applied to test the eight dimensions of Kotter's change management principles. The results indicate that change management was applied in the implementation of Learningcare in UUM

    Provisioning Quality of Service of Wireless Telemedicine for E-Health Services: A Review

    Get PDF
    In general, on-line medical consultation reduces time required for medical consultation and induces improvement in the quality and efficiency of healthcare services. The scope of study includes several key features of present day e-health applications such as X-ray, ECG, video, diagnosis images and other common applications. Moreover, the provision of Quality of Service (QoS) in terms of specific medical care services in e-health, the priority set for e-health services and the support of QoS in wireless networks and techniques or methods aimed at IEEE 802.11 to secure the provision of QoS has been assessed as well. In e-health, medical services in remote places which include rustic healthcare centres, ships, ambulances and home healthcare services can be supported through the applications of e-health services such as medical databases, electronic health data and the transferring of text, video, sound and images. Given this, a proposal has been made for a multiple service wireless networking with multiple sets of priorities. In relation to the terms of an acceptable QoS level by the customers of e-health services, prioritization is an important criterion in a multi-traffic network. The requirement for QoS in medical networking of wireless broadband has paved the way for bandwidth prerequisites and the live transmission or real-time medical applications. The proposed wireless network is capable of handling medical applications for both normal and life-threatening conditions as characterized by the level of emergencies. In addition, the allocation of bandwidth and the system that controls admittance designed based on IEEE 802.16 especially for e-health services or wireless telemedicine will be discussed in this study. It has been concluded that under busy traffic conditions, the proposed architecture can used as a feasible and reliable infrastructure network for telemedicine

    Design a Novel Reverse Direction Transmission Using Piggyback and Piggyback With Block ACK to Improving the Performance of MAC Layer Based on Very High Speed Wireless LANs

    Get PDF
    A reverse direction transmission and block acknowledgement are the main features to improve the performance of MAC layer based on next generation wireless LANs. When the data send it in reverse direction from side A to B, side B does not need to send separate ACK, it may wait for a period of time is less than the sender’s time of period to avoid the retransmission at sender and send a piggyback frame (ACK+data) this called piggybacking. Piggyback with block ACK represented in multi data send from side A to B with block ACK request (BAR), side B send block ACK (BA) piggybacking with multi data to side A, this called piggybacking with block ACK. In our scheme here we want to propose a novel reverse direction transmission using piggyback and piggyback with block ACK which is divided each data frame send and receive into subframes and send each subframe separately, if there is an error happened during the transmission only retransmission the corrupted subframe instead of whole frame. We want to implement this work in NS2 simulator. The research contributions are summarized and the piggyback schemes that need to be investigated via high speed wireless LANs are also highlighted

    Provisioning Quality of Service of Wireless Telemedicine for E-health Services

    Get PDF
    Telemedicine is not yet all worked out where it can be utilized constantly or flexibly. But, it has enormous potential to be a tremendous asset to the world and all its civilizations. Telemedicine has had a positive impact on some aspects of patient care. There is no arguing that the contributions it can make have endless possibilities however more time and effort will be needed to organize telemedicine for it to be confidently accepted. Asynchronous telemedicine does not require the simultaneous availability of the source and recipient of patient information. Telemedicine can be roughly characterized as either synchronous or asynchronous. Synchronous telemedicine involves caregivers acquiring and acting upon information about a remote patient in near real-time

    Transmission Control Protocol Performance Comparison Using Piggyback Scheme In WLANS

    Get PDF
    The main problem at wireless networks is the overhead at MAC layer; when the data physical rate is increasing it causes increasing the overhead and decreasing at the MAC efficiency. In this study we study the performance comparison of TCP protocol in WLANs with and without using piggyback. The study of results concerning of implemented both mechanisms in NS2 simulator and find out the good performance from this comparison. Based on the results from our experiments show that the Piggyback scheme is one of the efficient ways to reduce the overhead at MAC wireless networks

    Reverse Direction Transmission in Wireless Networks: Review

    Get PDF
    Reverse direction mechanism is a promising significant development that may lead to promoting the accuracy of TXOP. The transfer, in conventional TXOP operation, is one way direction out of the station which holds the TXOP and which is not applied to some network services using two lane traffic namely VoIP and on-line gaming. Therefore, the conventional TXOP operation enhances only the forward direction transfer, but not the reverse direction transfer. Moreover, reverse direction mechanism makes it possible for the holder of TXOP to reserve unused TXOP time for its receivers which may improve the channel utilization as well as the performance of reverse direction traffic flows. It is well-known that the reverse direction transfer scheme aims mainly to improve the effectiveness and that plays a key role in reducing the overhead and increasing the system throughput. Thus, this paper provides an overview of a research progress in reverse direction transmission scheme over high speed wireless LANs. Moreover, it addresses the reverse direction mechanism that has been proposed for the next generation wireless networks and the ones adopted by IEEE 802.11n standard. Furthermore, it stresses the reverse issues that require to be dealt with in order to bring further progress to the reverse direction transmission

    Reverse direction transmission using single data frame and multi data frames to improve the performance of mac layer based on IEEE 802.11N

    Get PDF
    Reverse direction transmission and block ACK are effective ways to improve the performance of MAC layer that reduces the overhead and increases the system throughput. As high as 600 Mbps of physical data rate is achieved in IEEE 802.11n where high data rate of the current MAC layer leads to a high performance overhead and low performance throughput. Further,designing the MAC layer is still ongoing to achieve high performance throughput. In this paper, we examine the performance enhancement of the proposed 802.11n MAC layer in terms of reverse direction transmission using a single data frame and multi data frames. We implemented these schemes in the NS2 simulator to show the results for TCP traffic and compared them with the literature

    A Review on Provisioning Quality of Service of Wireless Telemedicine for E-Health Services

    Get PDF
    In general, on-line medical consultation reduces time required for medical consultation induces improvement in the quality and efficiency of healthcare services. All major types of current e-health applications such as ECG, X-ray, video, diagnosis images and other common applications have been included in the scope of the study. In addition, the provision of Quality of Service (QoS) for the application of specific healthcare services in e-health, the scheme of priority for e-health services and the support of QoS in wireless networks and techniques or methods for IEEE 802.11 to guarantee the provision of QoS has also been assessed. In e-health, medical services in remote locations such as rural healthcare centers, ambulances, ships as well as home healthcare services can be supported through the applications of e-health services such as medical databases, electronic health records and the routing of text, audio, video and images. Given this, an adaptive resource allocation for a wireless network with multiple service types and multiple priorities have been proposed. For the provision of an acceptable QoS level to users of e-health services, prioritization is an important criterion in a multi-traffic network. The requirement for QoS provisioning in wireless broadband medical networks have paved the pathway for bandwidth requirements and the real-time or live transmission of medical applications. From the study, good performance of the proposed scheme has been validated by the results obtained. The proposed wireless network is capable of handling medical applications for both normal and life-threatening conditions as characterized by the level of emergencies. In addition, the bandwidth allocation and admission control algorithm for IEEE 802.16- based design specifically for wireless telemedicine/e-health services have also been presented in the study. It has been concluded that under busy traffic conditions, the proposed architecture can used as a feasible and reliable infrastructure network for telemedicine
    corecore